nl03315 software

vecow L0 Eaon 2021012

Record of Revision

Version Date Page Description Remark
0.1 2020/12/21 All Initial Release
1.0 2021/01/12 All Official Release

©Vecow Al03315 Software Development Kit

Declaimer

This manual is released by Vecow Co., Ltd. for reference purpose only. All product offerings and
specifications are subject to change without prior notice. It does not represent commitment of
Vecow Co., Ltd. Vecow shall not be liable for direct, indirect, special, incidental, or consequential
damages arising out of the use of the product or documentation or any infringements upon the
rights of third parties, which may result from such use.

Declaration of Conformity

FCC

This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection
against harmful interference when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy, and if it is not installed and
used in accordance with the instruction manual, it may cause harmful interference to radio
communications. Operation of this equipment in a residential area is likely to cause harmful
interference in which case the user will be required to correct the interference at his own expense.

CE

The products described in this manual complies with all applicable European Union (CE) directives if
it has a CE marking. For computer systems to remain CE compliant, only CE-compliant parts may be
used. Maintaining CE compliance also requires proper cable and cabling techniques.

Copyright and Trademarks

This document contains proprietary information protected by copyright. No part of this publication
may be reproduced in any form or by any means, electric, photocopying, recording or otherwise,
without prior written authorization by Vecow Co., Ltd. The rights of all the brand names, product
names, and trademarks belong to their respective owners.

©Vecow Al03315 Software Development Kit iii

Table of Contents

CHAPTER 1 INSTALL THE SOFTWARE

1.1 How to Install the Software
1.1.1 Install PCl driver
1.1.2 Where to Find the Files
1.1.3 About the Software Package

1.2 Language Support

1.2.1 Building Applications with the AI03315 Software Library

1.2.2 AlO3315 Windows Library

CHAPTER 2 DLL FUNCTIONS

2.1 Function Format and Language Difference
2.1.1 Function Format
2.1.2 Variable Data Types

2.1.3 Programming Language Considerations

2.2 Flow Chart of Application Implementation

2.2.1 Flow chart of Application Implementation

2.3 Software Overview and DLL Function
2.3.1 DLLIist
2.3.2 General Functions
2.3.3 DA (Digital to Analog) Function
2.3.4 AD (Analog to Digital) Function
2.3.5 1/O Port R/W
2.3.6 Timer Function
2.3.7 Interrupt Function
2.3.8 Error Conditions

2.4 Error Code Table
2.4.1 Error Code Table

©Vecow Al03315 Software Development Kit

N oo W N R R =

o

10
10
11
12
13
18
22
24
29

30
30

CHAPTER 1 INSTALL THE SOFTWARE

1.1 How to Install the Software

1.1.1 Install PCl driver

The PCl card is a plug and play card, once you add on a new card, the window system will

detect while it is booting. Please follow the following steps to install your new card.

For Windows XP / Windows 7 and up: (take Win XP as example)

1. Make sure the power is off

Plug in the interface card

Power on

A hardware install wizard will appear and tell you it finds a new PCl card

vk wnN

Do not response to the wizard, just Install the file
(..\AIO3315_A\Software\WinXP_7_10\ or if you download from website please execute
the file AIO3315_Install(Vx.x_yyyymm).exe to get the file)

After installation, power off

Power on, it’s ready to use

1.1.2 Where to Find the Files
For Windows XP / Windows 7 and up, the directory will be located at your install path:

..\AIO3315\API\(header files and lib files for VB, VC, BCB, C#, VB.net)
..\AIO3315\API\x64(for x64 system, header files and lib files for VC, BCB, C#, VB.net)
..\AIO3315\Driver\(backup copy of AlI03315 drivers)

..\AIO3315\exe\(demo program and source code)

The system driver is located at windows_folder\system32\Drivers and the DLL is located at

windows_folder\system.

Note:
For Windows 32-bit system, the default directory at “C:\Program Files”
For Windows 64-bit system, the default directory at “C:\Program Files (x86)”

Windows folder: windows install path (usually at “C:\windows\”)

For your easy startup, the demo program with source code demonstrates the card functions

and help file.

©Vecow Al03315 Software Development Kit 1

1.1.3 About the Software Package

Al03315 software includes a set of dynamic link library (DLL) and system driver that you can

utilize to control the I/0 card’s ports and points separately.

Your AIO3315 software package includes setup driver, tutorial example and test program
that help you how to setup and run appropriately, as well as an executable file which you
can use to test each of the AIO3315 functions within Windows’ operation system

environment.

To set up and use your Al03315 software, you need the following:
AlO3315 software
Al03315 hardware Main board
Wiring board (Option)

You have several options to choose from when you are programming Al03315 software. You
can use Borland C/C++, Microsoft Visual C/C++, Microsoft Visual Basic, or any other
Windows-based compiler that can call into Windows dynamic link libraries (DLLs) for use
with the AIO3315 software.

©Vecow Al03315 Software Development Kit 2

1.2 Language Support

The AlIO3315 software library is a DLL used with Windows XP / Windows 7 and up. You can
use these DLL with any Windows integrating development environment that can call
Windows DLLs.

1.2.1 Building Applications with the AlI03315 Software Library

The AIO3315 function reference topic contains general information about building AI03315
applications, describes the nature of the AIO3315 files used in building AIO3315 applications,
and explains the basics of making applications using the following tools:

Microsoft Visual C/C++

Borland C/C++

Microsoft Visual C#

Microsoft Visual Basic

Microsoft VB.net

If you are not using one of the tools listed, consult your development tool reference manual

for details on creating applications that call DLLs.

1.2.2 AIO3315 Windows Library

The AlO3315 for Windows function library is a DLL called Al03315.dll. Since a DLL is used,
AlO3315 functions are not linked into the executable files of applications. Only the
information about the AlO3315 functions in the AIO3315 import libraries is stored in the
executable files. Import libraries contain information about their DLL-exported functions.
They indicate the presence and location of the DLL routines. Depending on the development
tools you are using, you can make your compiler and linker aware of the DLL functions

through import libraries or through function declarations.

Refer to Table 1 to determine to which files you need to link and which to include in your
development to use the Al03315 functions in AI03315.dll.

Table 1. Header Files and Import Libraries for Different Development Environment

Language Header File Import Library
Microsoft Visual C/C++ AlO3315.h AlO3315VC.lib
Borland C/C++ AlO03315.h AIO3315BC.lib
Microsoft Visual C# AlO3315.cs

©Vecow Al03315 Software Development Kit 3

Microsoft Visual Basic

AlO3315.bas

Microsoft VB.net

AlO3315.vb

©Vecow Al03315 Software Development Kit

CHAPTER 2 DLL FUNCTIONS

2.1 Function Format and Language Difference

2.1.1 Function Format
Every AlIO3315 function is consist of the following format:
Status = function_name (parameter 1, parameter 2, ... parameter n);

Each function returns a value in the Status global variable that indicates the success or
failure of the function. A returned Status equal to zero that indicates the function executed
successfully. A non-zero status indicates failure that the function did not execute successfully

because of an error or executed with an error.
Note: Status is a 32-bit unsigned integer.

The first parameter to almost every AlO3315 function is the parameter CardID which is
located the driver of AlO3315 board you want to use those given operation. The CardID is
assigned by DIP/ROTARY SW. You can utilize multiple devices with different card CardID

within one application; to do so, simply pass the appropriate CardID to each function.
Note: CardID is set by DIP/ROTARY SW (0x0-0xF)

These topics contain detailed descriptions of each AlIO3315 function. The functions are
arranged alphabetically by function name. Refer to AlIO3315 Function Reference for

additional information.

2.1.2 Variable Data Types

Every function description has a parameter table that lists the data types for each parameter.
The following sections describe the notation used in those parameter tables and throughout

the manual for variable data types.

©Vecow Al03315 Software Development Kit 5

Table 2. Data Type Parameter Table

Primary Type Names

Pascal

Name| Description Range C/C++ Visual BASIC (Borland

Delphi)
Not supported by
BASIC. For functions
8-bit ASCII

us8 ! 0 to 255 char that require character |Byte

character .
arrays, use string
types instead.

16-bit signed -32,768 to 32, Integer (for example:

11 h N
6 integer 767 short Device Num%) small Int
Not supported by
BASIC. For functions
unsigned that require unsigned
U16 .16—b|t unsigned 0o 65, 535 shor'F for |r?teger§, use the Word
integer 32-bit signed integer type
compilers |instead.
See the il6
description.
-2,147, 483, 648
32-bit signed Long
132 integer to long (for example: count&) Long Int
& 2, 147, 483, 647 ple:
Not supported by Cardinal (
BASIC. For functions |in 32-bit
h . . .
uzz |P2bitunsigned |0to Unsgned | e e e | ymome),
integer 4, 294,967,295 |long ng INTEBErs, Y '
signed long integer Refer to the
type instead. See the |i32
i32 description. description.
32-bit
single-precision |-3.402823E+38 Single (for example: ,

F32 float Singl
floating-point to 3.402823E+38 od num!) Ingle
value
64-bit -1.797683134862
double-precision|315E+308 to Double (for example:

F64 doubl Doubl
floating-point 1.797683134862 ouble voltage Number) ouble
value 315E+308

©Vecow Al03315 Software Development Kit 6

2.1.3 Programming Language Considerations

Apart from the data type differences, there are a few language-dependent considerations
you need to be aware of when you use the AI0O3315 API. Read the following sections that

apply to your programming language.

Note: Be sure to include the declaration functions of AlIO3315 prototypes by including the
appropriate Al03315 header file in your source code. Refer to Building Applications with the
AlO3315 Software Library for the header file appropriate to your compiler.

Function format for C/C++

For C or C++ programmers, parameters listed as Input/Output parameters or Output
parameters are pass-by-reference parameters, which means a pointer points to the
destination variable should be passed into the function. For example, the Read Port function
has the following format:

Status = AIO3315_port_read (u8 CardID, u8 port, u8*data);

where CardID and port are input parameters, and data is an output parameter. Consider the
following example:

u8 CardID, port; u8 data,
u32 Status;
Status = AIO3315 _port_read (CardID, port, &data);

Function format for Visual basic

The file AlO3315.bas contains definitions for constants required for obtaining DIO Card
information and declared functions and variable as global variables. You should use these

constants symbols in the Al03315.bas, do not use the numerical values.

In Visual Basic, you can add the entire AI03315.bas file into your project. Then you canuse
any of the constants defined in this file and call these constants in any module of your
program. To add the Al03315.bas file for your project in Visual Basic 4.0, go to the File menu
and select the Add File... option. Select AI03315.bas, which is browsed in the AI03315 \ API
directory. Then, select Open to add the file to the project.

To add the AlO3315.bas file to your project in Visual Basic 5.0 and 6.0, go to the Project
menu and select Add Module. Click on the Existing tab page. Select AlI03315.bas, which is in
the AlIO3315 \ API directory. Then, select Open to add the file to the project

Function format for Borland C++ builder

©Vecow Al03315 Software Development Kit 7

To use Borland C++ builder as development tool, you should generate a .lib file from the .dll
file by implib.exe.

implib AIO3315BC.lib AlI03315.dll
Then add the AIO3315BC.lib to your project and add #include “Al03315.h” to main program.

Now you may use the DLL functions in your program. For example, the Read Port function
has the following format:

Status = AIO3315 _port_read (u8 CardID, u8 port, u8*data);

where CardID and port are input parameters, and data is an output parameter. Consider the
following example:

u8 CardID, port; u8 data;

u32 Status;

Status = AIO3315_port_read (CardID, port, &data);

©Vecow Al03315 Software Development Kit 8

2.2 Flow Chart of Application Implementation

2.2.1 Flow chart of Application Implementation

(DIO Application)

Driver Initial
AE_1000_initial()

Initial Success
Status =0

Configure the DIO port

Configure the DIO port status = AE_1000_port_config_set()
Set input debounce time status = AE_1000_debounce_time_set()
DIO Operation of AE-1000 Card

Set Outport Data Status = AE_1000_port_set()

or Read I/O port data Status = AE_1000_port_read() >

or Read I/O point state Status = AE_1000_point_read()

or Set Out point state Status = AE_1000_point_set()

Close Application and Release DLL Resource Exception Process

Status = AE_1000_close()

v
(End)

You need to initialize system resource each time you run your application. AI03315_initial()

will do. Once you want to close your application, call AIO3315 close() to release all the
resource. If you want to know the physical address assigned by OS. Use Al0O3315 info() to
get the address and Card Type

©Vecow Al03315 Software Development Kit 9

2.3 Software Overview and DLL Function

2.3.1 DLLIist

Table 3. DLL list

No Function Name Description

1. |AIO3315_initial() AlO3315 Initial

2. |AIO3315_close() Al03315 Close

3. |AIO03315_info() get OS. Assigned address

4. |AIO3315_DA set() DA output

5. [AlIO3315_DA_read() read back DA setting data

6. |AlO3315_AD_config_set() configure each channel as differential or single
end

7. |Al03315_AD_config_read() read back configuration of each channel

8. |AlI03315_AD_range_set() set up each group conversion range

9. |AIO3315_AD_range_read() Read back each group conversion range setting

10. |AIO3315_AD start() start AD conversion of designated channel

11. |AlIO03315_AD_read() read AD conversion data

12. |AlI03315_AD_all_read() Read a specific port AD data

13. |AlO3315_ port_config_set() Port direction configuration

14. |AlO3315 _port_config_read() Read back port configuration

15. |AlO3315_debounce_time_set() |Setinput port debounce time

16. |Al03315_debounce_time_read() |Read back input port debounce time

17. |AlO3315 port_set() Set Output port

18. [AlO3315 port_read() Read the register or input values of the 1/O port

19. |AlO3315_point_set () Set the bit data of output port

20. [AlI03315_point_read() Read the state of the input points or output register

21. |AlO3315_timer_set() Set timer constant

22. |Al03315_timer_read() Read timer on the fly

23. [AIO3315_timer_start() Start timer operation

24. |Al03315_timer_stop() Stop timer operation

©Vecow Al03315 Software Development Kit

10

25. [AI03315_TC_ set() load data to timer related registers

26. [Al03315_TC_read() Read back data of timer related registers
27. |AI03315_IRQ_polarity_set() Sets the IRQ polarity of port0

28. [Al03315_IRQ_polarity_read() Read back the setting of IRQ polarity

29. [AI03315_IRQ_mask_set() Mask off the IRQ

30. [AlI03315_IRQ_mask_read() Read back the mask

31. [AIO3315_IRQ_process_link() Link irq service routine

32. [AI03315_IRQ_enable() Enable interrupt function
33. |AlO03315_IRQ_disable() Disable interrupt function
34. |AI03315_IRQ_status_read() Read back the IRQ status

2.3.2 General Functions

Al03315_initial

Format: u32 status =Al03315 _initial (void)
Purpose: Initial the AIO3315 resource when start the Windows applications.

Al03315 close

Format: u32 status =AI03315_close (void);

Purpose: Release the AIO3315 resource when close the Windows applications.

Al03315_info

Format: u32 status =Al03315_info(u8 CardID, u8 *CardType, ul6 *DIO_address, ul6
*TC_address);
Purpose: Read the physical I/O address assigned by O.S.
Parameters:
1/0 Name Type Description
Input CardID u8 assigned by DIP/ROTARY SW
CardType u8 0: Al03315 (12 bit version)

1: AIO3315A (16 bit version)

Output))
DIO_address ulée |physical I/O address assigned to DIO block by OS

TC_address ulé |physical I/O address assigned to timer block by OS

©Vecow Al03315 Software Development Kit

2.3.3 DA (Digital to Analog) Function

The digital to analog conversion function is implemented by hardware, to output analog

voltage just use:

AlO3315 DA set(), and you can also read back the settings by
AlO3315 DA read().
AlO3315 DA set

Format: u32 status = AI03315_DA_set(u8 CardID, u8 channel, ul6 data)
Purpose: DA output
Parameters:
1/0 Name Type Description
CardID u8 assigned by DIP/ROTARY SW
channel u8 0: DAO channel
1: DA1 channel
data ule | 0~Oxfff (AlI03315), 0~Oxffff (AI0O3315A) for analog
Input output range -10V~ +10V

0: -10V
Ox7ff (AI03315) Ox7fff (AlIO3315A): OV

Oxfff (Al03315) Oxffff (AIO3315A): 10V

Al03315_DA_read

Format: u32 status = AI0O3315_DA_read(u8 CardID, u8 channel, ul6 *data)

Purpose: read back DA setting data

Parameters:

1/0 Name Type Description
CardID u8 assigned by DIP/ROTARY SW
Input channel u8 |0: DAO channel
1: DA1 channel
data ule |0~Oxfff (AI03315), O~Oxffff (AlIO3315A) for analog
output =10V ~ 10V
Output

0:-10v

©Vecow Al03315 Software Development Kit

12

Ox7ff (AI0O3315) 0x7fff (AIO3315A): OV

Oxfff (AlIO3315) Oxffff (AI0O3315A): 10V

2.3.4 AD (Analog to Digital) Function

The analog input maybe single end or differential, you can configure individual channel as

single end input or the corresponding pair as differential input by:

Al03315_AD_config_set() and read back to verify the configuration setting by
Al03315 _AD config_read().

The analog inputs maybe at different voltage range, you can configure the adequate input

range to fit the inputs by:

Al03315_AD range_set() and read back to verify the settings by:
Al03315_AD range_read()

Once the input type and input range has been set, you can start AD conversion by:

Al03315 _AD start () and read the conversion data by
AlO3315 _AD read().

To read a specific port (contains 8 channels) use:

Al03315_AD all _read()

Al03315 _AD config_set

Format: u32 status = AI03315_AD_config_set (u8 CardID, u8 port, AD_config
*AD_config)
Purpose: configure each channel as differential or single end.
Parameters:
1/0 Name Type Description
CardID u8 assigned by DIP/ROTARY SW
port ud 0: port0, ADOx

1: portl, AD1x
2: port2, AD2x
3: port3, AD3x

Input

AD_config | AD_config |struct AD_config{ u8 ch01_config, u8 ch23_config, u8

©Vecow Al03315 Software Development Kit 13

ch45_ config, u8 ch67_ config
}
// ch01: Alx0~AIx1

// ch23: Alx2~AlIx3

// ch45: Alx4~AIx5

// ch67: Alx6~AlIx7

// chNM_config:

//0: chNM is paired differential and polarity is normal
//1: chNM is paired differential and polarity is inverse
//2: invalid

//3: chNM is single end

For example, if you will configure

channel 0, 1 as differential with polarity normal,
channel 2, 3 as single end

channel 4, 5, channel 6, 7 as differential with inverse

polarity then struct AD_configis {0, 3, 1, 1}

Al03315 _AD config _read

Format: u32 status = AI03315_AD_config_read (u8 CardID, u8 port,
AD_config*AD_config)

Purpose: read back configuration of each channel.

Parameters:

1/0 Name Type Description
CardID u8 assigned by DIP/ROTARY SW
port u8 0: port0, ADOx
Input 1: portl, AD1x

2: port2, AD2x
3: port3, AD3x

AD_config | AD_config |struct AD_config{ u8 ch01_config, u8 ch23_config, u8

Output]]
ch45_ config, u8 ch67_ config}

Al0O3315 AD range_set

Format: u32 status = AI03315_AD_range_set(u8 CardID, u8 port, AD_range
*AD_range)
Purpose: set up each group conversion range

©Vecow Al03315 Software Development Kit 14

Parameters:

1/0

Name

Type

Description

Input

CardID

us8

assigned by DIP/ROTARY SW

port

us8

0: port0, ADOx
1: portl, AD1x
2: port2, AD2x
3: port3, AD3x

AD_range

AD_range

struct _AD_Range{ u8 ch0_ range, u8 chl_range, u8
ch2_range, u8 ch3_range

u8 ch4_ range, u8 ch5_ range, u8 ch6_ range, u8 ch7_
range}

// chN_range

//0: +-5V

//1: 0-5V

//2: +-10V

//3: 0-10V

Note:

If the even channel is configured as differential input, the next odd number channel

member is invalid.

For example chO is configured as differential input by AI0O3315_AD_config_set, then the

AD_Range.chl_range is of no use.

Al03315 _AD range_read

Format: u32 status = AI03315_AD_range_read(u8 CardID, u8 port, AD_range
*AD_range)
Purpose: read back each group conversion range setting
Parameters:
1/0 Name Type Description
CardID us assigned by DIP/ROTARY SW
port ud 0: port0, ADOx
Input 1: portl, AD1x
2: port2, AD2x
3: port3, AD3x
Output | AD_range | AD_range |struct _AD_Range{u8 chO_range, u8 chl_range, u8

©Vecow Al03315 Software Development Kit

15

ch2_range, u8 ch3_range

u8 ch4_ range, u8 ch5_ range, u8 ch6_ range, u8 ch7_
range

}
// chN_range
//0: +-5V
//1: 0-5V
//2: +-10V
//3: 0-10V

AlO3315 AD start

Format: u32 status = AI03315_AD_start(u8 CardID, u8 port, u8 channel)
Purpose: start AD conversion of designated port and channel
Parameters:
1/0 Name Type Description
CardID u8 assigned by DIP/ROTARY SW
port ud 0: port0, ADOx
1: portl, AD1x
Input
2: port2, AD2x
3: port3, AD3x
channel u8 0~7, channel no for portN

AlO3315_AD_read

Format: u32 status = AI03315_AD_read(u8 CardID, u8 port, ul6 *data)
Purpose: read AD conversion data of previous designated port and channel
Parameters:
1/0 Name Type Description
CardID us assigned by DIP/ROTARY SW
port ud 0: port0, ADOx
1: portl, AD1x
Input 2: port2, AD2x
3: port3, AD3x
data uleé 0~0xfff (AlIO3315),
0~0xffff (AI0O3315A).

©Vecow Al03315 Software Development Kit

16

AD converted data

Note:
Al03315_AD_start will select the port and channel for the next AD operation.
Before read back the data by AI03315_AD_read, you must check the status by
Al03315_IRQ_status_read (no matter you use interrupt or not) to confirm the AD data
is ready.
The AD conversion time frame is as follows:

')
1. AD_start O 3.AD start 1 5 AD _start 2
2_unknown_AD 4 start_ 0 AD 6. start_1_AD
=
frame0 frame1 frame?

At the same time frame, the command starts the designated AD channel and collect the
converted data. In order to confirm the operation is complete, we suggest using
AlO3315 IRQ_status_read to verify the completeness of conversion then use
Al03315_AD_read to read the converted data.

Al03315 _AD all_read

Format: u32 status = AI0O3315_AD _all read(u8 CardID, u8 port, ul6 data[8])
Purpose: read AD conversion data of all channels of a specific port.
Parameters:
1/0 Name Type Description
CardID u8 assigned by jumper setting
port u8 0: port0, ADOx
1: portl, AD1x
Input 2: port2, AD2x
3: port3, AD3x
data[8] ule 0~Oxfff (Al03315),
0~0xffff (AIO3315A). AD converted data

Note:
To read all channels, please follow the sequence:

©Vecow Al03315 Software Development Kit 17

1.
2.

2.3.5

Set up start channel at channel 0 by AI0O3315_AD_start.
Read all channels by AI0O3315_AD_all_read.

1/0 Port R/W

Before using a 10 port, you must configure the port direction (as input or as output) first by

AlO3315 port_config_set() and any time you can

AlO3315_port_config_read()

read back configuration by

Mechanical contact or noisy environment always induced unstable state at digital inputs, the

AlO3315 provides software selectable debounce function (the former digital 10 cards use

hardware debounce and fixed at one frequency). You can filter out the pulse width at 10ms
(100Hz), 5ms (200Hz), 1ms (1KHz) or no filter as you need.

Use AIO3315 debounce_time_set() to select the debounce frequency and read back the
setting by AI03315_debounce_tme_read().

Then you can use the following functions for 1/O port output, data reading and control:
AlO3315 port_set() to output byte data to output port,

Al03315 port_read() to read a byte data from 1/0 port,

AlO3315 point_set () to set output bit,

Al03315 point_read() to read I/0 bit,

AlO3315 port_config_set

Format: u32 status =Al03315_port_config_set (u8 CardID, u8 port, u8 configuration)

Purpose: Sets port configuration.

Parameters:

1/0 Name Type Description
CardID u8 assigned by Rotary SW
port u8 port number 0: portO
1: portl
Input | configuration ug8 |bo:

0: port0 as input port (default) 1: portO as output port
bl:
0: portl as input port (default) 1: port1 as output port

AlO3315 port_config_read

©Vecow Al03315 Software Development Kit

18

Format:

u32 status =Al03315_port_config_read (u8 CardID, u8 port, u8
*configuration)

Purpose: read port configuration.
Parameters:
1/0 Name Type Description
CardID u8 assigned by Rotary SW
Input port ud port number O: port0
1: portl
configuration u8 b0:
0: port0 as input port (default) 1: port0 as output port
Output

bl:
0: portl as input port (default) 1: portl as output port

Al0O3315 debounce_time_set

Format: u32 status = AI0O3315_debounce_time_set (u8 CardID, u8 port, u8
debounce_time)
Purpose: set the input port debounce time
Parameters:
1/0 Name Type Description
CardID u8 |assigned by Rotary SW
port u8 |port number O: port0
1: portl
Input debounce_time| u8 |Debounce time selection: 0: no debounce
1: filter out duration less than 10ms (default)
2: filter out duration less than 5ms
3: filter out duration less than 1ms

Note: only valid for port configured as input

AlO3315 debounce_time_read

Format:

Purpose:

u32 status = AI0O3315_debounce_time_read (u8 CardID, u8 port, u8
*debounce_time)

To read back configuration of debounce mode

Parameters:

©Vecow Al03315 Software Development Kit

1/0 Name Type Description
CardID u8 assigned by Rotary SW
Input port u8 port number O: port0
1: portl
debounce_ u8 Debounce time selection: 0: no debounce
time 1: filter out duration less than 10ms (default)
Output

2: filter out duration less than 5ms
3: filter out duration less than 1ms

AlO3315 port set

Format: u32 status = AI03315_port_set (u8 CardID, u8 port, u8 data)
Purpose: Sets the output data.

Parameters:

1/0 Name Type Description
CardID u8 |assigned by Rotary SW
port u8 |port number O: port0
1: portl
Input data u8 |bitmap of output values

do not output.

and output.

If port is configured as output, the data is registered

If port is configured as input, the data is registered and

Note: If you change the configuration from input to output, the previous registered data will

be output.

Al03315 port_read

Format: u32 status = AI03315_port_read (u8 CardID, u8 port, u8 *data)
Purpose: Read the register or input values of the I/0 port.
Parameters:
1/0 Name Type Description
CardID u8 assigned by Rotary SW
Input port u8 port number O: portO
1: portl

©Vecow Al03315 Software Development Kit

20

Output

data

us8

I/O data

If port is configured as input, the data is external input
data.

If port is configured as output, the

data is the output register data.

AlO3315 point_set

Format: u32 status =AI03315_point_set (u8 CardID, u8 port, u8 point, u8 state)
Purpose: Sets the bit data of output port.
Parameters:
1/0 Name Type Description
CardID u8 |assigned by Rotary SW
port u8 |port number O: port0
1: portl
point u8 |point number
T 0~7 for bit0~bit7
state u8 |state of output point

If port is configured as input, the data is registered and
do not output.

If port is configured as output, the data is

registered and output.

Note: If you change the configuration from input to output, the previous registered data will

be output.

AlO3315 point_read

Format: u32 status =Al03315_point_read (u8 CardID, u8 port, u8 point, u8 *state)
Purpose: Read the state of the input points or output register.
Parameters:
1/0 Name Type Description
CardID u8 assigned by Rotary SW
Input port u8 port number O: port0
1: portl
point u8 point number of input

©Vecow Al03315 Software Development Kit 21

0~7 for bit0~bit7

state u8 state of point of input
If port is configured as input, the data is external input
Output data.

If port is configured as output, the data is

the output register data.

2.3.6 Timer Function

There is a build in 32 bit timer run on 1lus time base, you can set the timer constant by
AlO3315 timer _set() and AIO3315 timer read() to read timer value on the fly.
AlO3315_timer_start() to start its operation and generate interrupt, AI03315_timer_stop()
to stop operation.

For the timer related registers use: AIO3315_TC set() to set registers, AI03315_TC read()
to read back registers.

AlO3315 timer_set

Format: u32 status = AI03315_timer_set (u8 CardID, u32 Timer_constant)
Purpose: set time constant.
Parameters:
1/0 Name Type Description
CardID u8 |assigned by DIP/ROTARY SW
Input
Timer_constant | u32 |Timer _constant based on 1us time base

Note:
1. Time constant is based on 1us clock, period T= (time_constant +1) * 1us

2. If you also enable the timer interrupt, the period T must at least larger than the system

interrupt response time else the system will be hanged by excess interrupts.

AlO3315 timer_read

Format: u32 status = AI0O3315_timer_read (u8 CardID, u32 * Timer_constant)
Purpose: To read timer value on the fly
Parameters:

1/0 Name Type Description

©Vecow Al03315 Software Development Kit 22

Input CardID u8 |assigned by DIP/ROTARY SW

Output | Timer_constant | u32 [timer value on the fly

AlO3315_timer_start

Format: u32 status = AI03315_timer_start (u8 CardID)
Purpose: start timer function.
Parameters:
1/0 Name Type Description
Input CardID u8 assigned by DIP/ROTARY SW

Note: timer time out will generate interrupt if you do not mask off by using
AlO3315_IRQ_mask_set.

AlO3315 timer_stop

Format: u32 status = AI03315_timer_stop (u8 CardID)
Purpose: stop timer function.
Parameters:
1/0 Name Type Description
Input CardID u8 assigned by DIP/ROTARY SW

Al03315_TC_set

Format: u32 status= AI03315_TC_set (u8 CardID, u8 index, u32 data)
Purpose: To load data to timer related registers
Parameters:
1/0 Name Type Description
CardID u8 |assigned by DIP/ROTARY SW
index u8 |0: TC_CONTROL
1: PRELOAD
Input 2: TIMER
data u32 |Forindex=TC_CONTROL O: stop timer operation
1: timer run
For index = PRELOAD or TIMER Data is the constant to
be load

©Vecow Al03315 Software Development Kit 23

Note: PRELOAD is the register for timer to re-load, the value will be valid while timer count
to zero and reload the data.

Al03315 _TC read

Format: u32 status= AlIO3315_TC_read (u8 CardID, u8 index, u32 *data)

Purpose: To read data from timer related registers

Parameters:

1/0 Name Type Description
CardID u8 assigned by DIP/ROTARY SW
T index u8 0: TC_CONTROL
1: PRELOAD
2: TIMER
Output data u32 Data read back

2.3.7 Interrupt Function

Sometimes you want your application to take care of the 1/O while special event occurs,
interrupt function is the right choice. AI03315 provide 1000 ~ 1007 as external event trigger
input. You may configure the trigger polarity by:

Al03315_IRQ_polarity_set() and read back by

Al03315_IRQ_polarity read()

For timer, AD and digital 10 interrupts, you can mask off the source you don” want by
Al03315_IRQ_mask_set() and read back by

Al03315_IRQ_mask_read().

After all the above is prepared, you must first link your service routine to the driver by
Al03315_IRQ_process_link()

Now all is ready, you can enable the interrupt by AI0O3315_IRQ_enable() or disable by
AlO03315_IRQ_disable().

To read back the interrupt status (at interrupt service routine or polling routine) use
Al03315_IRQ_status_read().

After reading the status register on card will be cleared.

AlO3315_IRQ_polarity_set

Format: u32 status = AI0O3315_IRQ_polarity_set (u8 CardID, u8 polarity)
Purpose: Sets the IRQ polarity of port0 (I000~1007)
Parameters:

©Vecow Al03315 Software Development Kit 24

Input

1/0 Name Type Description
CardID u8 assigned by Rotary SW
polarity u8 Data to be set, 0x0 ~ Oxff bit0: 1000

0:normal (default) 1:invert

bit7: 1007 0:normal (default)
l:invert

Note: PortO must configured as input port for I000~I007 IRQ function.

Al03315 IRQ_polarity _read

Format: u32 status = AI03315_IRQ_polarity_read (u8 CardID, u8 *polarity)

Purpose: Read the IRQ polarity of the I000~1007

Parameters:

1/0 Name Type Description
Input CardID u8 |assigned by Rotary SW
polarity u8 |Data to be set, 0x0 ~ Oxff bit0: 1000
0:normal (default) 1:invert
Output .

bit7: 1007 0:normal (default)
l:invert

Al03315 IRQ_mask_set

Format: u32 status = AI03315_IRQ_mask_set (u8 CardID, u8 source, u8 mask)
Purpose: Mask interrupt from port0 1007~1000 or timer
Parameters:
1/0 Name Type Description
CardID u8 |assigned by Rotary SW
source u8 |0: digital /0 block 1: AD block
2: timer block
Input mask u8 |Digital 10 block:
b0=0, 1000 input disable irg b0=1, 1000 input can
generate irq

©Vecow Al03315 Software Development Kit

25

b7=0, 1007 input disable irqg b7=1, I007input can
generate irq

AD block:

b0=1 means ADO end of conversion can generate
interrupt

b0=0 ADO will not generate interrupt while end of
conversion

b1=1 means AD1 end of conversion can generate
interrupt

b1=0 AD1 will not generate interrupt while end of
conversion

b2=1 means AD2 end of conversion can generate
interrupt

b2=0 AD2 will not generate interrupt while end of
conversion

b3=1 means AD3 end of conversion can generate
interrupt

b3=0 AD3 will not generate interrupt while end of
conversion

Timer block:

b0=1 means timer time out can generate interrupt
b0=0 timer will not generate interrupt

while time out

Al03315 IRQ_mask_read

Format: u32 status = AI03315_IRQ_mask_read (u8 CardID, u8 source, u8 *mask)
Purpose: read back interrupt Mask of I007~1000 or ADC or timer
Parameters:
1/0 Name Type Description
CardID u8 assigned by Rotary SW
Input source us 0: digital I/O block 1: AD block
2: timer block
mask u8 Digital 10 block:
Output b0=0, 1000 input disable irg b0=1, 1000 input can

generate irq

©Vecow Al03315 Software Development Kit

26

b7=0, 1007 input disable irqg b7=1, I007input can
generate irq

AD block:

b0=1 means ADO end of conversion can generate
interrupt

b0=0 ADO will not generate interrupt while end of
conversion

b1=1 means AD1 end of conversion can generate
interrupt

b1=0 AD1 will not generate interrupt while end of
conversion

b2=1 means AD2 end of conversion can generate
interrupt

b2=0 AD2 will not generate interrupt while end of
conversion

b3=1 means AD3 end of conversion can generate
interrupt

b3=0 AD3 will not generate interrupt while end of

conversion

Timer block:
b0=1 means timer time out can generate interrupt

b0=0 timer will not generate interrupt while time

out
AlO3315 IRQ _process_link
Format: u32 status = AI03315_IRQ_process_link (u8 CardID, void (stdcall
*callbackAddr)(u8 CardID))
Purpose: Link irq service routine to driver
Parameters:
1/0 Name Type Description
CardID u8 assigned by Rotary SW

Input callbackAddr void |callback address of service

routine

©Vecow Al03315 Software Development Kit

27

AlO3315_IRQ_enable

Format: u32 status = AI03315_IRQ_enable (u8 CardID, HANDLE *phEvent)

Purpose: Enable interrupt from selected source

Parameters:
1/0 Name Type Description
Input CardID u8 assigned by Rotary SW
Output | phEvent HANDLE |event handle

AlO3315_IRQ_disable

Format: u32 status = AI03315_IRQ_disable (u8 CardID)
Purpose: Disable interrupt from selected source

Parameters:
1/0 Name Type Description
Input CardID u8 assigned by Rotary SW

Al03315 IRQ_status_read

Format: u32 status = AI03315_IRQ_status_read (u8 CardID, u8 source, u8
*Event_Status)
Purpose: To read back the interrupt status to identify the source
Parameters:
1/0 Name Type Description
CardID u8 assigned by Rotary SW
Input source u8 0: digital /O block 1: AD block
2: timer block
Event_Status u8 Digital 10 block:
b0=1, 1000 input generate irq
b7=1, 1007 input generate irq
Output AD block:

b0=1, ADO end of conversion and data is ready
b0=0, ADO is under conversion
b1=1, AD1 end of conversion and data is ready

b1=0, AD1 is under conversion

©Vecow Al03315 Software Development Kit

28

b2=1, AD2 end of conversion and data is ready
b2=0, AD2 is under conversion

b3=1, AD3 end of conversion and data is ready
b3=0, AD3 is under conversion

Timer block:

b0=1 means timer count up occurred. b0=0 means

timer not count up.

Note:
Status read back will also clear the on board status register.
The status will reflect the on board digital input or timer count up status are irrelevant
to the IRQ_MASK

2.3.8 Error Conditions

The status returned by Al03315 functions may indicate an internal hardware problem on the
board.

Error Codes contains a detailed listing of the error. AI03315 card’s error conditions. There
are three possible fatal failure modes:

System Fail Status Bit Valid

Communication Loss

Hardware not ready

Please take the error code as reference to solve the problem.

©Vecow Al03315 Software Development Kit 29

2.4 Error Code Table

2.4.1 Error Code Table

Error Code Symbolic Name Description
0 DRV_NO_ERROR No error.
1 DRV_READ_DATA ERROR |Read data error
2 DRV_INIT_ERROR Driver initial error
100 DEVICE_IO_ERROR Device Read/Write error
101 DRV_NO_CARD No AlO3315 card on the system.
102 DRV_DUPLICATE_ID Al03315 CardID duplicate error.
103 DRV_NOT_INSTALL AlO3315 driver not installed completely
300 ID ERROR Function input parameter error. CardID . setting
- error, CardID doesn’t match the DIP SW setting

302 POINT ERROR Function input parameter error.

- Parameter out of range.
303 DATA ERROR Function input parameter error.

- Parameter out of range.
304 CONFIGURATION ERROR Hardware ver'sion can not match with

- software version

305 DEBOUNCE_TIME_ERROR |Debounce timer setting error
400 INDEX_ERRROR TC register index error
401 CONSTANT_ERROR Time constant error
402 TC_CONTROL_ERROR TC control register setting error
500 DA_DATA_ERROR DA setting data error
501 DA_CHANNEL_ERROR DA channel selection error
600 AD_PORT_ERROR AD port selection error
601 AD_CHANNEL_ERROR AD channel selection error
602 AD_CONFIG_ERROR AD channel configuration error
603 AD _RANGE_ERROR AD range setting error
700 SOURCE_ERROR IRQ source error
701 POLARITY_ERROR IRQ polarity error
702 MASK_ERROR IRQ mask error

©Vecow Al03315 Software Development Kit

30

vecow

For further support information, please contact chris.huang@vecow.com

This document is released for reference purpose only.

All product offerings and specifications are subject to change without prior notice.

No part of this publication may be reproduced in any form or by any means, electric, photocopying,
or recording, without prior authorization from the publisher.

The rights of all the brand names, product names, and trademarks belong to their respective
owners.

© Vecow Co., Ltd. 2021. All rights reserved.

mailto:chris.huang@vecow.com

